The generator matrix

 1  0  1  1  1  1  1  X  1 2X  1  1  1  1  1 2X  6  1  1  1  1 X+6  1  1  1  3  1  1 2X  1  1  1  1  1  1 2X+3 X+3  1  1  1  1  1  1  1  1 2X+6  1  1  X  1  1  1  1  1  1 2X  1  3  1  X  1  3  1  1  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  3  1  1  1  1  6  X  6  3  1  0  1  1  1
 0  1  1  8  3 2X+1  8  1  8  1  0 2X+4 2X+4  3 X+8  1  1 X+1  0 X+2  0  1  1 2X+2  6  1  5 2X+1  1 2X+1  8 X+3  1 X+8 X+3  1  1 2X+2  1 X+6  7 X+2 2X+3 X+4  5  1 X+8  4  1 2X+3 X+5 X+4 X+3  7 2X+8  1 2X+7  1 X+6  1  7  1 2X  2  1 X+2 2X+2  5  4  7 2X+8 X+6 2X+2 X+5 2X+3 2X+3 2X+6 2X X+3  X 2X+2 2X+2 2X+4  8  1 2X  0  1 X+6  X  X X+5  4
 0  0 2X  0  3  0  0  6  6  0  3  3  3 X+3 X+3 2X+6  X X+6 2X+6 2X+6 X+3 X+6 2X+6  X 2X+3  X 2X+6  X 2X+6 2X 2X+6  X X+6 X+3 2X+6 2X+3  6  0 2X+3 X+6 X+6 2X  6  0  X X+3  3  X 2X X+3 2X X+3 X+6 X+6 2X  3 2X 2X+3 2X+3 2X+3 2X+6 X+6  3  3 X+3  X  X 2X+3  6  3  6  0  0  X X+6 2X+3 X+3  3  3  X X+6  6  0  0  6 X+3  3 X+6 2X+3  3 2X 2X+3 2X+3
 0  0  0  X X+3 X+6  6  X 2X+6 2X+6 2X  0 2X+3 2X+3 2X+6 2X+6  3 2X+6  0  3  6  X X+3  3 X+6 2X X+6  0  0 2X+6 2X X+3 X+6 X+6 2X+6 X+3 2X+6 X+3  3  X 2X X+6 X+3 2X  6  0  6 X+6 2X+3  X 2X+3  0 2X+3  6 X+6  6  3 X+3  X 2X 2X 2X 2X+6 X+6 X+6 2X  0  6 X+6  0 2X+6 2X+3  3  X  X 2X 2X+6  X  6 X+6  X  X 2X+6 2X+6  6 2X+3  X  0 2X+3 2X+6 X+3 2X 2X+3

generates a code of length 93 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 175.

Homogenous weight enumerator: w(x)=1x^0+258x^175+474x^176+838x^177+1512x^178+1812x^179+2652x^180+3342x^181+2820x^182+3560x^183+5448x^184+3858x^185+5048x^186+5424x^187+4416x^188+4016x^189+4662x^190+2526x^191+2214x^192+1638x^193+678x^194+662x^195+342x^196+228x^197+120x^198+72x^199+108x^200+14x^201+72x^202+48x^203+50x^204+42x^205+42x^206+18x^207+24x^208+2x^210+2x^213+6x^214

The gray image is a code over GF(3) with n=837, k=10 and d=525.
This code was found by Heurico 1.16 in 14.8 seconds.